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LETTER TO THE EDITOR

Existence of a spin liquid state for the frustrated quantum
Heisenberg antiferromagnet for large values of the spin

Jaime Ferrert

Serin Physics Laboratory, Rutgers University, PO Box 849, Piscataway, NJ 08855-0849,
USA

Received 20 October 1992

Abstract, The existence of 2 spin liquid ground state for the strongly frustrated quantum
antiferromagnet on a square lattice is reconsidered. Spin wave theory shows that the
stability of the Néel state is increased along the classical critical line except at the
Lifshitz point, while that of the spiral state is depressed by the same amount. The
system is described by a unique action which is continuous through the transition point.
A renormalization group analysis shows that the effective coupling constant flows towards
strong coupling in its vicinity,

The recent surge of interest in 2+ I-dimensional magnetism has focused on the role
of quantum fluctuations, frustration and topology [1-3] in the properties of the zero-
temperature ground state of spin systems. It has been seen in particular that their
combined effect can induce spin disordered states and new kinds of order: valence
bond solid [4], spin Peierls [5], chiral [6] or spin nematic [7].

The aim of this letter is to shed some light on the recent controversy about the
existence of a spin liquid ground state for the Jy-J,-J; quantum antiferromagnet,
for large values of the spin and close to the classical transition line between the Néel
and spiral ordered states. It is striking that, despite intense efforts, the problem is
still under discussion, linear spin wave theory (LSWT) [8], numerical diagonalization
[9,10], finite series expansions [11] and renormalization group analysis [12] giving a
spin liquid state and the diverse large-N or other self-consistent theories [3, 13-17]
theories giving order from disorder [18] and a firsi-order phase transition between the
ordered states, instead. The main points below will be as follows.

(i) The classical critical line, CCL, J, —2.J,—4J; = (0, separates states with the same
symmetry. The transition is continuous classically, in the sense that the parameters
of the long-wavelength action S§[J;] vary smoothly along the transition. The same
happens for the quantum case, S[J;, S]: although there is an enhancement of the
stability of the Néel state close to the ccL, there is an identical decrease of the
stability of the spiral state. This means that the CCL is continued in a guantum critical
Dlane, QCP, which depends on S and is tilted towards bigger values of J, and J,.

(ii) Because the quantum action is continuous through the QCP, a generalized
sigma model can be used to describe the physics of the transition along the QCP
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and at its sides. A renormalization group analysis shows that the relevant coupling
constant aiways flows to strong coupling, meaning that the spin state is disordered.
The spin liquid state exists not only along that plane but also in a finite region around
it.

(iii) The end point of the CCL is a Lifshitz point. In this case, the counterpart of
the Néel state is not spiral, but collinear. Because the two states have different
symmetry, the classical actions for the two states are different, and there is no
continuity principle.

One can write the most general action for a classical helical magnet by noting
that the order parameter space is O(3) x U(1}/U(1) [7,19,20]

§= "% fdzmTl'{A; P A} = —%/dzw P (Af)? 1)

where A; = A?T, = ¢g~18,g is a pure gauge field, g(z) € SO(3) and T, €
Lie[SO(3)]. The gauge field is equivalent to a twist of the order parameter and serves
to define the spin stiffnesses, p® = (p®, p%, p*). The action S[p(Q, )] is unique for
both Néel and helical states and the spin stiffnesses are contiruous throughout the
whole phase diagram. @ ; is the pitch wavevector of the classical ground state.

After introducing quantum fluctuations, there s still a unique action for the whole
phase diagram, which varies continually when passing from the Néel to the spiral state
through the guentum critical plane. The action picks up an extra piece, due to the
fact that the fields become dynamical, and an implicit dependence on S through
Q,(S)—the pitch of the quantum ground state

§=3 [deoda (A5 + p* (AT, @

It will be proven below using spin wave theory (SWT) that the effect of quantum
fluctuations is: (1) to enhance the spin stiffness of the Néel state and reduce by the
same amount that of the spiral state so that both go to zero at the same displaced
point; (2) to renormalize also the pitch wavevector of the helical state so as to adjust
smoothly to the new boundary of the Néel state, where its value is (7, 7).

The order from disorder conjecture can also be proven using SWT by computing
the expression for the staggered magnetization close to the classical frustrated point:

1
(SFy=5+ E—aln(pd) + gpid+0(§12-) (3)

where p, = J; — 4J; is the classical spin stiffness—divided by S2—which is used
as a cut-off for the infrared divergent integrals [21]. This series can be resumed:
computing the spin wave energy to next to LsWT order in 1/S, one finds:

(8%} = 5+ 1 —vIn(p(5)) + O(1/S) )
_ o _ 4ds o AlR)Y(2k) — +3(k)

p(S)—pcl S Zk: \/Az(k:)—*yz(k)

v(k) = §(cos(k,) +cos(k,)}  A(k) = 1- J5(1-+(2k))

which is the LSWT result with a renormalized spin stiffness. It serves us to define the
QCP as the plane where p( ) is zero. That plane is tilted to the right of the CCL.

+ 0(1/5%)
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The QCP has to be the same for both the helicoidal and the Néel states (at least
for large S). In other words, the enhancement of the stability of the Néel state is
accompanicd by a similar reduction of the stability of the helicoidal one so that both
states match each other continuously. It is sufficient to compute the LSWT correction
to the pitch wavevector and to the stiffness to prove it:

172
o ' 1
B~ o =Aq= 2:3-&( 'd) +0( )
28 av("’-’.f.;,“l ,, T = Jou 52

283 S .
i = 2 4 2o, (sinlao) + 83sin(204))S Adh
2 2
2 A — )

+O(1)

()
where J; is the Fourier transform of J;; and J; = (Jy.q + Jx_q)/2. The spin
stiffness of the unfrustrated magnet is p = p (1-~0.118/5) (= 0. ’IE»*&;:;,=I for spin 1/2).

Figure 1(z) is a plot of the LSWT correction to g, for the spiral state to show that
it matches with (7, =) continually. Figure 1(b) is a plot of the LSWT correction to
the spin stiffness, and shows that it is enhanced for the Néel state close to the critical
point and it is decreased by the same amount on the other side. Although we have
not gone further, we conjecture that these two phenomena happen at every order in the
perturbative 1/S expansion, so that the action is continuous and unique.

‘Once it is proven that the physics of the system is continuous through the
transition point, one can look for the explicit form of the action S[p(Q;)] which
describes the magnet close to the transition point—from both sides—and perform a
renormalization group study. It is a generalization of the O(3) /U(1) = $? quantum
non-linear o model [22]. Close to the QCP the bare spin stiffness, p(9), is very small
and one has to take into account effects due to quartic terms. The zero-temperature
action is

1 o0 L R n -
§=3 f_m / dt dr {X"(B,n)” — P SI(8,4)%) + (8,4))

ala

(8,.7) + (8, )2 ~ ola?(8_.4)(3, ﬁ)}. ®

P%(8) is given by SWT (i.e. the stiffness renormalized by ‘short’-wavelength quantum
fluctuations), while ¥ have the values obtained in a gradient expansion. The naive
charge is g, = 1/,/pxa.

One of the problems which arise in the scaling analysis of the frustrated magnet
is that the coupling constant g, depends not only on S (as in the unfrustrated case),
but also on the exchange interactions J, J, and J;. Therefore, there is not a clear
indicator of the magnetic order of the microscopic model. Moreover, g, diverges at
the QcP, and therefore is not well suited for our analysis.

After performing the perturbative RG expansion [23-25] one arrives at the
following scaling equations:

dg/di=—-g + S 1(1+ (o - 20,)/8p)
dpfdl = —pgl (14 (o~ 20,)/4p)
do;/dl = —0;(24+ gI) (N
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Figure 1. (4) LSWT correction to goq; (b) classical spin stiffness (solid lines) and LswT
corrections to it {dashed lines)

where I is the loop integral

Vép [/ dg
I= > / .
™ Jo \/24,0 — 20y + (01 + 605,) sinZ 6

This integral diverges at the Lifshitz point, signalling that the scaling analysis
breaks down there: this point is quite pathological, and has to be treated in a
different way from the rest of the phase diagram. These scaling equations reduce
to those obtained from the weakly frustrated case [23] and to those obtained in [11]
when p(S) = 0 [12}

An unambiguous indicator for the ordering of the system is the charge

8

& = = ~ 1
Ve(S)xa xllza}ﬂa;“a (JpJ3)H2 S

(p’=0) )




Letter ro the Editor L65

introduced by Ioffe and Larkin [12]. Assuming that A = (o,0,)/*I/p'/?(S) does
not get renormalized, it is found that G satisfies

Gl = G* (10)

which is the effective charge of a system at its lower critical dimension, 1+1 here. It
flows towards strong coupling and generates a correlation length ¢ ~ ae!/%e ~ geS.

To draw the separatrix between the ordered state and the spin liquid we follow
Ioffe and Larkin and argue that for finite p(S} the relevant action is not given by
equation (6), but by

1 e s [ 0rn avz, Tha? N2 o \2
s=1 / / dt d2r < X(8,A) + —L5—((8,,7)* + (3, )7)
2 Jeoo I/ o(s)) 12

- agaz(axwﬁ)(ayyﬁ)} (11)

where In(1/p(S)) acts as a cut-off in the scaling equations. In that case, the separatrix
is given by
1+ Gyln{p(S5)) =0. (12)

\-\L

Figure 2. Flow diagram for the J;-J,~J3 model, linking the weakly and the strongly
frustrated magnets. We plot on the y-axis p(S), the spin stiffness renormalized by
short-wavelength quantum fluctuations. Rotating the figure by 90° we obtain the phase
diagram of swrt.

p(s)

It smoothly joins the one for the weakly frustrated case [26] (see figure 2). It is
amusing to note that on turning the figure by 90°, the diagram obtained is the same
as the one given by sWT (and Schwinger bosons mean field theory), if one takes into
account that p(S) is the dressed spin stiffness.

In conclusion, the J;,-J,~J; model has a spin disordered phase shifted from the
CCL, because (1) the same fluctuations which enhance the stability of the Néel state
depress that of the spiral state; (2) the scaling analysis for the strongly frustrated
magnet shows that the system flows towards strong coupling.
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